Musculoskeletal Modeling of the Lumbar Spine to Explore Functional Interactions between Back Muscle Loads and Intervertebral Disk Multiphysics
نویسندگان
چکیده
During daily activities, complex biomechanical interactions influence the biophysical regulation of intervertebral disks (IVDs), and transfers of mechanical loads are largely controlled by the stabilizing action of spine muscles. Muscle and other internal forces cannot be easily measured directly in the lumbar spine. Hence, biomechanical models are important tools for the evaluation of the loads in those tissues involved in low-back disorders. Muscle force estimations in most musculoskeletal models mainly rely, however, on inverse calculations and static optimizations that limit the predictive power of the numerical calculations. In order to contribute to the development of predictive systems, we coupled a predictive muscle model with the passive resistance of the spine tissues, in a L3-S1 musculoskeletal finite element model with osmo-poromechanical IVD descriptions. The model included 46 fascicles of the major back muscles that act on the lower spine. The muscle model interacted with activity-related loads imposed to the osteoligamentous structure, as standing position and night rest were simulated through distributed upper body mass and free IVD swelling, respectively. Calculations led to intradiscal pressure values within ranges of values measured in vivo. Disk swelling led to muscle activation and muscle force distributions that seemed particularly appropriate to counterbalance the anterior body mass effect in standing. Our simulations pointed out a likely existence of a functional balance between stretch-induced muscle activation and IVD multiphysics toward improved mechanical stability of the lumbar spine understanding. This balance suggests that proper night rest contributes to mechanically strengthen the spine during day activity.
منابع مشابه
Corrigendum: Musculoskeletal Modeling of the Lumbar Spine to Explore Functional Interactions between Back Muscle Loads and Intervertebral Disk Multiphysics
[This corrects the article on p. 111 in vol. 3, PMID: 26301218.].
متن کاملEstimation of spinal loads using a detailed finite element model of the L4-L5 lumbar segment derived by medical imaging kinematics; a feasibility study
Introduction: Low back pain is the most prevalent orthopedic disorder and the first main cause of poor working functionality in developed as wells as many developing countries. In Absence of noninvasive in vivo measurement approaches, biomechanical models are used to estimate mechanical loads on human joints during physical activities. To estimate joint loads via musculoskelet...
متن کاملLBNP treadmill exercise maintains spine function and muscle strength in identical twins during 28-day simulated microgravity.
The purpose of this study was to determine whether lower body negative pressure (LBNP) treadmill exercise maintains lumbar spinal compressive properties, curvature, and back muscle strength after 28 days of 6 degrees head-down tilt (HDT) bed rest (BR). We hypothesize that LBNP treadmill exercise will maintain lumbar spine compressibility, lumbar lordosis and back muscle strength after 28 days o...
متن کاملDiurnal changes in spinal mechanics and their clinical significance.
Diurnal changes in the loads acting on the spine affect the water content and height of the intervertebral discs. We have reviewed the effects of these changes on spinal mechanics, and their possible clinical significance. Cadaveric lumbar spines subjected to periods of creep loading show a disc height change similar to the physiological change. As a result intervertebral discs bulge more, beco...
متن کاملLumbar disc degeneration is associated with modic change and high paraspinal fat content – a 3.0T magnetic resonance imaging study
BACKGROUND Degenerative disc disease of the lumbar spine is common, with severe disease increasing the risk for chronic low back pain. This cross-sectional study examined whether disc degeneration is representative of a 'whole-organ' pathology, by examining its association with bone (vertebral endplate) and soft tissue (paraspinal muscle fat) abnormalities. METHODS Seventy-two community-based...
متن کامل